181 research outputs found

    The thermodynamics of optical étendue

    No full text
    The concept of ´etendue is applied to the propagation of luminescent radiation, and to the transformation of such radiation in absorbing and luminescent media. Central to this analysis is the notion of ´etendue as a measure of the number of rays in the beam which permits the definition of entropy and transition to the formalism of statistical mechanics. When considered from the statistical viewpoint, ´etendue conservation along the path of a beam in clear and transparent media then implies the conservation of entropy. The changes in thermodynamic parameters of a beam upon absorption and re-emission can then be determined in terms of the corresponding changes resulting from the addition or removal of photons from the incident and emitted beam. The thermodynamic theory which follows gives the rate of entropy generation in this process. At moderate light intensities, the results resemble the thermodynamics of a two-dimensional gas. The formalism allows an extension to absorption/emission processeswhere a high-temperature incident light beam is transformed reversibly into low-temperature luminescent radiation, corresponding to a potential increase in the open-circuit voltage of a solar cell

    Harnessing high altitude solar power

    Get PDF
    As an intermediate solution between Glaser's satellite solar power (SSP) and ground-based photovoltaic (PV) panels, this paper examines the collection of solar energy using a high-altitude aerostatic platform. A procedure to calculate the irradiance in the medium/high troposphere, based on experimental data, is described. The results show that here a PV system could collect about four to six times the energy collected by a typical U.K.-based ground installation, and between one-third and half of the total energy the same system would collect if supported by a geostationary satellite (SSP). The concept of the aerostat for solar power generation is then briefly described together with the equations that link its main engineering parameters/variables. A preliminary sizing of a facility stationed at 6 km altitude and its costing, based on realistic values of the input engineering parameters, is then presented

    Detailed balance method for thin photovoltaic converters

    No full text
    Thermodynamics and detailed balance arguments have provided the basic ideas for the understanding of solar cell efficiencies from a theoretical point of view. The general thermodynamic theories (see, for example,1) are usually not specific to details of the solar energy converter and hence give the most general and unrealistically high estimates. The Shockley-Queisser theory2 is based on the detailed balance between the incident and emitted photon fluxes. The incident flux - assumed to be completely absorbed by the cell - is approximated by a black-body distribution at temperature Ts of the sun. The emitted photon flux is often written in the form of a modified Planck distribution at the ambient temperature To. The resulting efficiency contains only one parameter of the semiconductor: the energy gap Eg. In the limit Eg>>kTs, the open circuit voltage can be approximated by3

    Photon reabsorption in fluorescent solar collectors

    No full text
    Understanding photon transport losses in fluorescence solar collectors is very important for increasing optical efficiencies. We present an analytical expression to characterize photon reabsorption in fluorescent solar collectors, which represent a major source of photon loss. A particularly useful universal form of this expression is found in the limit of high reabsorption, which gives the photon reabsorption probability in a simple form as a function of the absorption coefficient and the optical étendue of the emitted photon beam. Our mathematical model predicts fluorescence spectra emitted from the collector edge, which are in excellent agreement with experiment and provide an effective characterization tool for photon transport in light absorbing media

    Aerostat for Solar Power Generation

    Get PDF

    Comparison of UVB and UVC irradiation disinfection efficacies on Pseudomonas Aeruginosa biofilm

    Get PDF
    Disinfection routines are important in all clinical applications. The uprising problem of antibiotic resistance has driven major research efforts towards alternative disinfection approaches, involving light-based solutions. Pseudomonasaeruginosa (P. aeruginosa) is a common bacterium that can cause skin, soft tissue, lungs, kidney and urinary tract infections. Moreover, it can be found on and in medical equipment causing often cross infections in hospitals. The objective of this study was to test the efficiency, of two different light-based disinfection treatments, namely UVB and UVC irradiation, on P. aeruginosa biofilms at different growth stages. In our experiments a new type of UV light emitting diodes (LEDs) were used to deliver UV irradiation on the biofilms, in the UVB (296nm) and UVC (266nm) region. The killing rate was studied as a function of dose for 24h grown biofilms. The dose was ramped from 72J/m2 to 10000J/m2. It was shown that UVB irradiation was more effective than UVC irradiation in inactivating P. aeruginosa biofilms. No colony forming units (CFU) were observed for the UVB treated biofilms when the dose was 10000 J/m2 (CFU in control sample: 7.5 x 104). UVB irradiation at a dose of 20000J/m2 on mature biofilms (72h grown) resulted in a 3.9 log killing efficacy. The fact that the wavelength of 296nm exists in daylight and has such disinfection ability on biofilms gives new perspectives for applications within disinfection at hospitals

    Thermodynamic basis of the concept of "recombination resistances"

    Full text link
    The concept of "recombination resistance" introduced by Shockley and Read (Phys. Rev. 87, 835 (1952)) is discussed within the framework of the thermodynamics of irreversible processes ruled by the principle of the minimum rate of entropy production. It is shown that the affinities of recombination processes represent "voltages" in a thermodynamic Ohm-like law where the net rates of recombinations represent the "currents". The quantities thus found allow for the definition of the "dissipated power" which is to be related to the rate of entropy production of the recombination processes dealt with.Comment: Submitted to Phys. Rev.
    corecore